Exercise 12

Follow the steps below to evaluate the Fresnel integrals, which are important in diffraction theory:

$$
\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\frac{1}{2} \sqrt{\frac{\pi}{2}} .
$$

FIGURE 99

(a) By integrating the function $\exp \left(i z^{2}\right)$ around the positively oriented boundary of the sector $0 \leq r \leq R, 0 \leq \theta \leq \pi / 4$ (Fig. 99) and appealing to the Cauchy-Goursat theorem, show that

$$
\int_{0}^{R} \cos \left(x^{2}\right) d x=\frac{1}{\sqrt{2}} \int_{0}^{R} e^{-r^{2}} d r-\operatorname{Re} \int_{C_{R}} e^{i z^{2}} d z
$$

and

$$
\int_{0}^{R} \sin \left(x^{2}\right) d x=\frac{1}{\sqrt{2}} \int_{0}^{R} e^{-r^{2}} d r-\operatorname{Im} \int_{C_{R}} e^{i z^{2}} d z
$$

where C_{R} is the arc $z=R e^{i \theta}(0 \leq \theta \leq \pi / 4)$.
(b) Show that the value of the integral along the $\operatorname{arc} C_{R}$ in part (a) tends to zero as R tends to infinity by obtaining the inequality

$$
\left|\int_{C_{R}} e^{i z^{2}} d z\right| \leq \frac{R}{2} \int_{0}^{\pi / 2} e^{-R^{2} \sin \phi} d \phi
$$

and then referring to the form (2), Sec. 81, of Jordan's inequality.
(c) Use the results in parts (a) and (b), together with the known integration formula*

$$
\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}
$$

to complete the exercise.

[^0]
Part (a)

In order to evaluate the Fresnel integrals, consider the corresponding function in the complex plane,

$$
f(z)=e^{i z^{2}}
$$

and the contour in Fig. 99. According to the Cauchy-Goursat theorem, the integral of $e^{i z^{2}}$ around the closed contour is equal to zero because the function has no singularities within it.

$$
\oint_{C} e^{i z^{2}} d z=0
$$

This closed loop integral is the sum of three integrals, one over each arc in the loop.

$$
\int_{L_{1}} e^{i z^{2}} d z+\int_{L_{2}} e^{i z^{2}} d z+\int_{C_{R}} e^{i z^{2}} d z=0
$$

The parameterizations for the arcs are as follows.

$$
\begin{array}{rllll}
L_{1}: & z=r e^{i 0}, & r=0 & \rightarrow & r=R \\
L_{2}: & z=r e^{i \pi / 4}, & r=R & \rightarrow & r=0 \\
C_{R}: & z=R e^{i \theta}, & \theta=0 \quad \rightarrow \quad \theta=\frac{\pi}{4}
\end{array}
$$

As a result,

$$
\begin{aligned}
& 0=\int_{0}^{R} e^{i\left(r e^{i 0}\right)^{2}}\left(d r e^{i 0}\right)+\int_{R}^{0} e^{i\left(r e^{i \pi / 4}\right)^{2}}\left(d r e^{i \pi / 4}\right)+\int_{C_{R}} e^{i z^{2}} d z \\
& 0=\int_{0}^{R} e^{i r^{2}} d r+e^{i \pi / 4} \int_{R}^{0} e^{i r^{2} e^{i \pi / 2} d r+\int_{C_{R}} e^{i z^{2}} d z} \\
& 0=\int_{0}^{R}\left(\cos r^{2}+i \sin r^{2}\right) d r+\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right) \int_{R}^{0} e^{i^{2} r^{2}} d r+\int_{C_{R}} e^{i z^{2}} d z \\
& 0=\int_{0}^{R}\left(\cos r^{2}+i \sin r^{2}\right) d r-\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right) \int_{0}^{R} e^{-r^{2}} d r+\int_{C_{R}} e^{i z^{2}} d z \\
& 0=\int_{0}^{R} \cos r^{2} d r+i \int_{0}^{R} \sin r^{2} d r-\frac{1}{\sqrt{2}} \int_{0}^{R} e^{-r^{2}} d r-i \frac{1}{\sqrt{2}} \int_{0}^{R} e^{-r^{2}} d r+\int_{C_{R}} e^{i z^{2}} d z .
\end{aligned}
$$

Match the real and imaginary parts of both sides of the equation to obtain two separate equations, one involving the integral of cosine and one involving the integral of sine.

$$
\begin{aligned}
& \int_{0}^{R} \cos r^{2} d r-\frac{1}{\sqrt{2}} \int_{0}^{R} e^{-r^{2}} d r+\operatorname{Re} \int_{C_{R}} e^{i z^{2}} d z=0 \\
& \int_{0}^{R} \sin r^{2} d r-\frac{1}{\sqrt{2}} \int_{0}^{R} e^{-r^{2}} d r+\operatorname{Im} \int_{C_{R}} e^{i z^{2}} d z=0
\end{aligned}
$$

Solve both equations for the desired integrals.

$$
\begin{aligned}
\int_{0}^{R} \cos r^{2} d r & =\frac{1}{\sqrt{2}} \int_{0}^{R} e^{-r^{2}} d r-\operatorname{Re} \int_{C_{R}} e^{i z^{2}} d z \\
\int_{0}^{R} \sin r^{2} d r & =\frac{1}{\sqrt{2}} \int_{0}^{R} e^{-r^{2}} d r-\operatorname{Im} \int_{C_{R}} e^{i z^{2}} d z
\end{aligned}
$$

Part (b)

Here we will show that the integral over C_{R} tends to zero as $R \rightarrow \infty$. The parameterization of C_{R} is $z=R e^{i \theta}$, where θ goes from 0 to $\pi / 4$.

$$
\begin{aligned}
\int_{C_{R}} e^{i z^{2}} d z & =\int_{0}^{\pi / 4} e^{i\left(R e^{i \theta}\right)^{2}}\left(R i e^{i \theta} d \theta\right) \\
& =\int_{0}^{\pi / 4} e^{i R^{2} e^{2 i \theta}}\left(R i e^{i \theta} d \theta\right) \\
& =\int_{0}^{\pi / 4} e^{i R^{2}(\cos 2 \theta+i \sin 2 \theta)}\left(R_{i} e^{i \theta} d \theta\right) \\
& =\int_{0}^{\pi / 4} e^{i R^{2} \cos 2 \theta} e^{-R^{2} \sin 2 \theta}\left(R_{i}^{i \theta} d \theta\right)
\end{aligned}
$$

Now consider the integral's magnitude.

$$
\begin{aligned}
\left|\int_{C_{R}} e^{i z^{2}} d z\right| & =\left|\int_{0}^{\pi / 4} e^{i R^{2} \cos 2 \theta} e^{-R^{2} \sin 2 \theta}\left(R i e^{i \theta} d \theta\right)\right| \\
\leq & \int_{0}^{\pi / 4}\left|e^{i R^{2} \cos 2 \theta} e^{-R^{2} \sin 2 \theta}\left(R i e^{i \theta}\right)\right| d \theta \\
& =\int_{0}^{\pi / 4}\left|e^{i R^{2} \cos 2 \theta}\right|\left|e^{-R^{2} \sin 2 \theta}\right|\left|R i e^{i \theta}\right| d \theta \\
& =\int_{0}^{\pi / 4} e^{-R^{2} \sin 2 \theta} R d \theta
\end{aligned}
$$

Take the limit now as $R \rightarrow \infty$.

$$
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} e^{i z^{2}} d z\right| \leq \lim _{R \rightarrow \infty} \int_{0}^{\pi / 4} e^{-R^{2} \sin 2 \theta} R d \theta
$$

Because the limits of integration are constant, the limit may be brought inside the integral.

$$
=\int_{0}^{\pi / 4} \lim _{R \rightarrow \infty} \frac{R}{e^{R^{2} \sin 2 \theta}} d \theta
$$

The indeterminate form ∞ / ∞ is obtained as $R \rightarrow \infty$, so l'Hôpital's rule will be applied to calculate the limit.

$$
\stackrel{\frac{\infty}{\infty}}{\stackrel{\infty}{\mathrm{D}}} \int_{0}^{\pi / 4} \lim _{R \rightarrow \infty} \frac{1}{e^{R^{2} \sin 2 \theta} \cdot 2 R \sin 2 \theta} d \theta
$$

Since θ lies between 0 and $\pi / 4$, the sine of 2θ is positive, and the denominator goes to infinity. Consequently,

$$
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} e^{i z^{2}} d z\right| \leq 0
$$

The magnitude of a number cannot be negative.

$$
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} e^{i z^{2}} d z\right|=0
$$

The only number that has a magnitude of zero is zero.

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} e^{i z^{2}} d z=0
$$

Matching the real and imaginary parts of both sides of this equation,

$$
\lim _{R \rightarrow \infty} \operatorname{Re} \int_{C_{R}} e^{i z^{2}} d z=0 \quad \text { and } \quad \lim _{R \rightarrow \infty} \operatorname{Im} \int_{C_{R}} e^{i z^{2}} d z=0
$$

Part (c)
In the limit as $R \rightarrow \infty$ the result of part (a) becomes

$$
\begin{aligned}
& \int_{0}^{\infty} \cos r^{2} d r=\frac{1}{\sqrt{2}} \int_{0}^{\infty} e^{-r^{2}} d r-\overbrace{\lim _{R \rightarrow \infty} \operatorname{Re} \int_{C_{R}} e^{i z^{2}} d z}^{=0}=\frac{1}{\sqrt{2}} \frac{\sqrt{\pi}}{2} \\
& \int_{0}^{\infty} \sin r^{2} d r=\frac{1}{\sqrt{2}} \int_{0}^{\infty} e^{-r^{2}} d r-\underbrace{\lim _{R \rightarrow \infty} \operatorname{Im} \int_{C_{R}} e^{i z^{2}} d z}_{=0}=\frac{1}{\sqrt{2}} \frac{\sqrt{\pi}}{2} .
\end{aligned}
$$

Therefore, changing the dummy integration variable to x,

$$
\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\frac{1}{2} \sqrt{\frac{\pi}{2}} .
$$

[^0]: *The usual way to evaluate this integral is by writing its square as

 $$
 \int_{0}^{\infty} e^{-x^{2}} d x \int_{0}^{\infty} e^{-y^{2}} d y=\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y
 $$

 and then evaluating this iterated integral by changing to polar coordinates. Details are given in, for example, A. E. Taylor and W. R. Mann, "Advanced Calculus," 3d ed., pp. 680-681, 1983.

